Abstract
Mercury (Hg) and its compounds are a kind of worldwide concerned persistent toxic pollutants. As the major primary producer in the ocean, microalgae are expected to play an important role in the cycling and accumulation of Hg in marine ecosystems by either uptake Hg species from seawater or involving in the transformations of Hg species. However, there is still lack of clear knowledge on whether microalgae can induce the methylation and demethylation of Hg in aquatic environments. In this study, Hg isotope dilution and isotope addition techniques were utilized to determine the methylation and demethylation potential of Hg at concentrations comparable to that in natural environments by 15 common marine microalgae (8 species of Diatoms, 4 species of Dinoflagellates, 2 species of Chlorophyta and 1 species of Chrysophyte). Methylation of inorganic Hg was found to be negligible in the culture of all tested marine microalgae, while 6 species could significantly induce the demethylation of methylmercury (MeHg). The rates of microalgae mediated MeHg demethylation were at the same order of magnitude as that of photodemethylation, indicating that marine microalgae may play an important role in the degradation of MeHg in marine environments. Further studies suggest that the demethylation of MeHg by the microalgae may be mainly caused by their extracellular secretions (via photo-induce demethylation) and associated bacteria, rather than the direct demethylation of MeHg by microalgae cells. In addition, it was found that thiol groups may be the major component in microalgal extracellular secretions that lead to the photo-demethylation of MeHg.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.