Abstract

AbstractDuring the past two decades, the Maritime Continent (MC) has experienced increased deforestation. Here we show, with ensemble idealized deforestation experiments, that the MC deforestation could potentially alter the complexity (i.e., event‐to‐event differences) of the El Niño‐Southern Oscillation (ENSO) in terms of its spatial pattern and temporal evolution. The deforestation model run increases the occurrences of the Central Pacific and multi‐year types of ENSO compared to the control experiments. This change in ENSO complexity can be attributed to MC's intensification of the subtropical ENSO dynamics, commonly known as the seasonal footprinting mechanism. The deforestation amplifies the mean state of the subtropical high over the northeastern Pacific, leading to an increased dominance of subtropical ENSO dynamics in determining the ENSO pattern and evolution. This idealized coupled climate modeling study suggests that MC deforestation has a potential to alter ENSO's complexity, making El Niño more complex and less predictable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call