Abstract

¶The fields of sea-level height anomaly (SLHA) and surface zonal wind anomaly (SZWA) have been analyzed to investigate the typical evolution of spatial patterns during El Nino-Southern Oscillation (ENSO) events. Sea surface temperature (SST) changes during ENSO events are represented as an irregular interplay of two dominant modes, low-frequency mode and biennial mode. Cyclostationary principal component (PC) time series of the former variables are regressed onto the PC time series of the two dominant SSTA modes to find the spatial patterns of SLHA and SZWA consistent with the two SSTA modes. The two regressed patterns of SLHA explain a large portion of SLHA total variability. The reconstruction of SLHA using only the two components reasonably depicts major ENSO events. Although the low-frequency component of SST variability is much larger than the biennial component, the former does not induce strong Kelvin and Rossby waves. The biennial mode induces much stronger dynamical ocean response than the low-frequency mode. Further decomposition of the SLHA modes into Kelvin and Rossby components shows how these two types of equatorial waves evolve during typical ENSO events. The propagation and reflection of these waves are clearly portrayed in the regressed patterns leading to a better understanding of the wave mechanism in the tropical Pacific associated with ENSO. A close examination suggests that the delayed action oscillator hypothesis is generally consistent with the analysis results reported here. Rossby wave development in the central Pacific in the initiation stage of ENSO and the subsequent reflection of Kelvin waves at the western boundary seems to be an important mechanism for further development of ENSO. The development of Kelvin waves forced by the surface wind in the far-western Pacific cannot be ruled out as a possible mechanism for the growth of ENSO. While Kelvin waves in the far-western Pacific serve as an intiation mechanism of ENSO, they also cause the termination of existing ENSO condition in the central and eastern Pacific, thereby leading to a biennial oscillation over the tropical Pacific. The Kelvin waves from the western Pacific erode the thermocline structure in the central Pacific preventing further devlopment of ENSO and ultimately terminating it. It should be emphasized that this wave mechanism is clear and active only in the biennial mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call