Abstract

Recently, the HBr+ + HCl bimolecular reaction has been exploited by guided ion beam studies to probe the effect of rotational excitations and collision energies on the dynamics of the ion-molecule reactions. The current manuscript employs high-level ab initio calculations and reports the potential energy of pathways leading to various products, including HBr + HCl+, H2Cl+ + Br, H2Br+ + Cl, and H2 + BrCl+. The study shows that the intermediates involved in this reaction are connected by low-lying transition states, thus frequent isomerizations and diverse products are expected. Further, this manuscript screens the performance of 192 different combinations of computationally efficient methods and basis sets in order to identify the optimal quantum chemical method for further dynamics simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.