Abstract

The systematic reduction of the commonly used correlation consistent basis sets [cc-pVnZ where n=D(2), T(3), Q(4), and 5] as a means to reduce computational cost has been extended to hydrogen-containing third-row (Ga-Kr) molecules of the G2 test suite. Coupled cluster with singles, doubles, and quasiperturbative triple excitations [CCSD(T)] calculations were performed using both the full correlation consistent basis sets and a series of truncated basis sets in order to assess the impact of basis set reduction upon the structures and energies of the species. The impact that truncation of the basis sets for hydrogen has upon extrapolation of energies to the complete basis set limit also has been examined, and the cost savings that can be achieved are discussed. Overall, basis set reduction can be accomplished which preserves the systematic convergence behavior of the full correlation consistent basis sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.