Abstract

Substance P-immunoreactive boutons were examined in the electron microscope in sections of the rat neostriatum that contained retrogradely labelled striatonigral neurons and/or Golgi-impregnated medium-size densely spiny neurons. The post-synaptic targets of the immunoreactive boutons were characterized on the basis of ultrastructural features, their projection to the substantia nigra and/or their somato-dendritic morphology. Substance P-immunoreactive axonal boutons formed symmetrical synaptic specializations. Of a total of 233 randomly identified synaptic boutons 72.5% made contact with dendritic shafts, 15% with dendritic spines and 10.7% with perikarya. The ultrastructural characteristics of some of the postsynaptic neuronal perikarya were consistent with their identification as striatal interneurons. Similarly, the observation of some of the substance P-containing terminals in contact with spines, spine-bearing dendritic shafts and perikarya with the ultrastructural characteristics of medium-size densely spiny neurons suggested that one of the targets of substance P-positive terminals are striatal projection neurons. Direct evidence for this was obtained in sections from rats that had received injections of horseradish peroxidase conjugated with wheatgerm agglutinin in the substantia nigra. The perikarya of retrogradely labeled striatonigral neurons were found to receive symmetrical synaptic input from substance P-positive boutons. Ultrastructural analysis of Golgi-impregnated medium-size densely spiny neurons, some of which were also retrogradely labeled from the substantia nigra, demonstrated directly that this class of neuron was postsynaptic to the substance P-immunoreactive boutons. The combination of Golgi-impregnation with substance P-immunocytochemistry made it possible to study the pattern or topography of the substance P-positive input to medium size densely spiny neurons. The substance P-containing boutons made contact predominantly with perikarya and dendritic shafts. This pattern of input is markedly different from that of other identified inputs to medium-size densely spiny neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.