Abstract
Background As every organ within the body, the brain is also extremely susceptible to a plethora of noxious agents that change its chemistry. One component frequently found in current products against harmful species to crops is rotenone whose effect under prolonged exposure has been demonstrated to cause neurodegenerative disorders such as Parkinson's disease. The latest reports have indeed revealed that rotenone promotes Parkinson's in humans, but studies aiming to show congruent effects in zebrafish (Danio rerio) are lacking. Material and Methods. In this context, the aim of the present study was to demonstrate how chronic administration of rotenone for 3 weeks impairs the locomotor activity and sociability and induces oxidative stress in zebrafish. Results There were no statistically significant differences following the analysis of their social interaction and locomotor tests (p > 0.05). However, several exceptions have been noted in the control, rotenone, and probiotics groups when we compared their locomotor activity during the pretreatment and treatment interval (p < 0.05). We further assessed the role of rotenone in disturbing the detoxifying system as represented by three enzymes known as superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA). Despite the fact that there were no statistically significant changes within SOD and GPx levels between the control group and rotenone, probiotics, and rotenone + probiotics (p > 0.05), relevant changes have been observed between the analyzed groups (p < 0.05 and p < 0.005, respectively). On the other hand, significant differences (p < 0.05) have been observed for MDA when we analyzed the data between the control group and the other three groups. Conclusions Our results suggest that rotenone can be successfully used to trigger Parkinson's disease-related symptomatology in zebrafish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.