Abstract

We calculate the high-energy (sub-GeV to TeV) prompt and afterglow emission of GRB 080319B that was distinguished by a naked-eye optical flash and by an unusual strong early X-ray afterglow. There are three possible sources for high-energy emission: the prompt optical and gamma-ray photons IC scattered by the accelerated electrons, the prompt photons IC scattered by the early external reverse-forward shock electrons, and the higher band of the synchrotron and the synchrotron self-Compton emission of the external shock. There should have been in total hundreds of high-energy photons detectable for the Large Area Telescope onboard the Fermi satellite, and tens of photons of those with energy > 10 GeV. The > 10 GeV emission had a duration about twice that of the soft gamma-rays. Astro-rivelatore Gamma a Immagini Leggero (AGILE) could have observed these energetic signals if it was not occulted by the Earth at that moment. The physical origins of the high-energy emission detected in GRB 080514B, GRB 080916C and GRB 081024B are also discussed. These observations seem to be consistent with the current high-energy emission models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call