Abstract
ABSTRACT Massive black holes at galaxy center may tear apart a star when the star passes occasionally within the disruption radius, which is the so-called tidal disruption event (TDE). Most TDEs radiate with thermal emission resulting from the acceleration disk, but three TDEs have been detected in bright nonthermal X-ray emission, which is interpreted as arising from the relativistic jets. A search for high-energy gamma-ray emission from one relativistic TDE (Swift J164449.3+573451) with the Fermi Large Area Telescope (LAT) has yielded nondetection. In this paper, we report the search for high-energy emission from the other two relativistic TDEs (Swift J2058.4+0516 and Swift J1112.2-8238) during the flare period. No significant GeV emission is found, with an upper limit fluence in the LAT energy range being less than 1% of that in X-rays. Compared with gamma-ray bursts and blazars, these TDEs have the lowest flux ratio between GeV emission and X-ray emission. The nondetection of high-energy emission from relativistic TDEs could be due to the fact that the high-energy emission is absorbed by soft photons in the source. Based on this hypothesis, upper limits on the bulk Lorentz factors, , are then obtained for the jets in these TDEs. We also search for high-energy gamma-ray emission from the nearest TDE discovered to date, ASASSN-14li. No significant GeV emission is found, and an upper limit of erg s−1 (at 95% confidence level) is obtained for the first 107 s after the disruption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.