Abstract

SUMMARYAn investigation was made of the chromosomal position of the mutant locus, in Mutant 10/13 ofTriticum aestivum(2n= 6x= 42), affecting homoeologous chromosome pairing at meiosis. In hybrids between Mutant 10/13 and rye (Secale cereale2n= 14), homoeologous chromosomes frequently pair at meiosis although normally, in wheat-rye hybrids, this happens infrequently.The association of the mutant condition with chromosome 5B was determined by (i) the absence of segregation in hybrids obtained when Mutant 10/13 monosomic 5B was pollinated by rye; (ii) the occurrence of trisomie segregation for pairing behaviour in 28-chromosome wheat-rye hybrids, obtained from SB trisomie wheat parents with two 5B chromosome from a non-mutant and one from a mutant parent; (iii) the absence of segregation for pairing behaviour in the 29-chromosome wheat-rye hybrids obtained from the same trisomie wheat parents.The alternative pairing behaviours segregated independently of the centromere when wheat plants that were simultaneously heteromorphic, 5BLtelocentric/5B complete, and heterozygous for the Mutant 10/13 state, were pollinated by rye. The alternative chromosome-pairing patterns segregated to give a ratio not different from 1:1, so that the association of homoeologous pairing with Mutant 10/13 probably derived from the occurrence of mutation at a single locus on 5BL. In the disomic heteromorphic state, 5BLwas 91 map units in length.Trisomie wheats with two complete 5B chromosomes and one 5BLtelocentric, that were also heterozygous for the Mutant 10/13 condition, were pollinated by rye. Among the resulting 28-chromosome hybrids there was a 2:1 segregation of hybrids with low pairing: high (homoeologous) pairing and also of hybrids with complete 5B: telocentric 5BL. However, there was no evidence of linkage in this trisomie segregation. All the 29-chromosome hybrids from this cross had low pairing and it could be concluded that the single mutant allele, in Mutant 10/13, was recessive. In the trisomie condition, relative to a simplex situation, 5BLwas 33·05 map units in length.The critical locus on 5BLwas designatedPairing homoeologous. The normal dominant allele was symbolizedPhand the recessive allele, in Mutant 10/13,ph.The prevention of homoeologous pairing by the activity of a single locus makes the evolution of the regular meiotic behaviour ofT. aestivummore readily comprehensible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.