Abstract
The tight-span of a finite metric space is a polytopal complex that has appeared in several areas of mathematics. In this paper we determine the polytopal structure of the tight-span of a totally split-decomposable (finite) metric. These metrics are a generalization of tree-metrics and have importance within phylogenetics. In previous work, we showed that the cells of the tight-span of such a metric are zonotopes that are polytope isomorphic to either hypercubes or rhombic dodecahedra. Here, we extend these results and show that the tight-span of a totally split-decomposable metric can be broken up into a canonical collection of polytopal complexes whose polytopal structures can be directly determined from the metric. This allows us to also completely determine the polytopal structure of the tight-span of a totally split-decomposable metric. We anticipate that our improved understanding of this structure may lead to improved techniques for phylogenetic inference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.