Abstract

In the context of finite metric spaces with integer distances, we investigate the new Ramsey-type question of how many points can a space contain and yet be free of equilateral triangles. In particular, for finite metric spaces with distances in the set $\{1,\ldots,n\}$, the number $D_n$ is defined as the least number of points the space must contain in order to be sure that there will be an equilateral triangle in it. Several issues related to these numbers are studied, mostly focusing on low values of $n$. Apart from the trivial $D_1=3$, $D_2=6$, we prove that $D_3=12$, $D_4=33$ and $81\leq D_5 \leq 95$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.