Abstract
In this paper, an improved approach for the solution of the regulator problem for linear discrete-time dynamical systems with non-Gaussian disturbances and quadratic cost functional is proposed. It is known that a suboptimal recursive control can be derived from the classical linear quadratic Gaussian (LQG) solution by substituting the linear filtering part with a quadratic, or in general polynomial, filter. However, we show that when the system is not asymptotically stable the polynomial control does not improve over the classical LQG solution, due to the lack of the internal stability of the polynomial filter. In order to enlarge the class of systems that can be controlled, we propose a new method based on a suitable rewriting of the system by means of an output injection term. We show that this allows us to overcome the problem and to design a polynomial optimal controller also for non asymptotically stable systems. Numerical results show the effectiveness of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.