Abstract

A simple procedure was developed to account for the contribution of freshly nucleated particles to the total polymerization rate during micellar nucleation. It has been shown that the polymerization rate of the freshly nucleated particles cannot be described by a steady-state solution for a radical population balance over the particle size distribution, i.e., the classical Smith-Ewart recursion relation. Once nucleated, the particles grow for a significant period of time with one radical before either radical desorption or radical absorption, followed by instantaneous bimolecular termination, occur. For most emulsion polymerizations, radical desorption is the dominant process for radical loss of the freshly nucleated particles. A relation for the mean time that the freshly nucleated particles grow with one radical was derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.