Abstract

PAR-3 (partitioning-defective gene 3) is essential for cell polarization in many contexts, including axon specification. However, polarity proteins have not been implicated in later steps of neuronal differentiation, such as dendritic spine morphogenesis. Here, we show that PAR-3 is necessary for normal spine development in primary hippocampal neurons. Depletion of PAR-3 causes the formation of multiple filopodia- and lamellipodia-like dendritic protrusions - a phenotype similar to neurons expressing activated Rac. PAR-3 regulates spine formation by binding the Rac guanine nucleotide-exchange factor (GEF) TIAM1, and spatially restricting it to dendritic spines. Thus, a balance of PAR-3 and TIAM1 is essential to modulate Rac-GTP levels and to allow spine morphogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.