Abstract
We study random walks on the lampshuffler group FSym(H)⋊H\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{FSym}(H)\\rtimes H$$\\end{document}, where H is a finitely generated group and FSym(H)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{FSym}(H)$$\\end{document} is the group of finitary permutations of H. We show that for any step distribution μ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu $$\\end{document} with a finite first moment that induces a transient random walk on H, the permutation coordinate of the random walk almost surely stabilizes pointwise. Our main result states that for H=Z\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H=\\mathbb {Z}$$\\end{document}, the above convergence completely describes the Poisson boundary of the random walk (FSym(Z)⋊Z,μ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(\ extrm{FSym}(\\mathbb {Z})\\rtimes \\mathbb {Z},\\mu )$$\\end{document}.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have