Abstract

Multidimensional indexing is concerned with the indexing of multi-attributed records, where queries can be applied on some or all of the attributes. Indexing multi-attributed records is referred to by the term multidimensional indexing because each record is viewed as a point in a multidimensional space with a number of dimensions that is equal to the number of attributes. The values of the point coordinates along each dimension are equivalent to the values of the corresponding attributes. In this paper, the PN-tree, a new index structure for multidimensional spaces, is presented. This index structure is an efficient structure for indexing multidimensional points and is parallel by nature. Moreover, the proposed index structure does not lose its efficiency if it is serially processed or if it is processed using a small number of processors. The PN-tree can take advantage of as many processors as the dimensionality of the space. The PN-tree makes use of B+-trees that have been developed and tested over years in many DBMSs. The PN-tree is compared to the Hybrid tree that is known for its superiority among various index structures. Experimental results show that parallel processing of the PN-tree reduces significantly the number of disk accesses involved in the search operation. Even in its serial case, the PN-tree outperforms the Hybrid tree for large database sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.