Abstract
We propose the PATRICIA-hypercube-tree, or PH-tree, a multi-dimensional data storage and indexing structure. It is based on binary PATRICIA-tries combined with hypercubes for efficient data access. Space efficiency is achieved by combining prefix sharing with a space optimised implementation. This leads to storage space requirements that are comparable or below storage of the same data in non-index structures such as arrays of objects. The storage structure also serves as a multi-dimensional index on all dimensions of the stored data. This enables efficient access to stored data via point and range queries. We explain the concept of the PH-tree and demonstrate the performance of a sample implementation on various datasets and compare it to other spatial indices such as the kD-tree. The experiments show that for larger datasets beyond 10^7 entries, the PH-tree increasingly and consistently outperforms other structures in terms of space efficiency, query performance and update performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.