Abstract

A plasmon of a bounded domain Ω ⊂ ℝn is a non-trivial bounded harmonic function on ℝn\∂Ω which is continuous at ∂Ω and whose exterior and interior normal derivatives at ∂Ω have a constant ratio. We call this ratio a plasmonic eigenvalue of Ω. Plasmons arise in the description of electromagnetic waves hitting a metallic particle Ω. We investigate these eigenvalues and prove that they form a sequence of numbers converging to one. Also, we prove regularity of plasmons, derive a variational characterization, and prove a second-order perturbation formula. The problem can be reformulated in terms of Dirichlet–Neumann operators, and as a side result, we derive a formula for the shape derivative of these operators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.