Abstract

<abstract><p>In this article, we provide a comprehensive convergence and stability analysis of a semi-Lagrangian scheme for solving nonlinear Burgers' equations with a high-order spatial discretization. The analysis is for the iteration-free semi-Lagrangian scheme comprising the second-order backward finite difference formula (BDF2) for total derivative and the fourth-order central finite difference for diffusion term along the trajectory. The main highlight of the study is to thoroughly analyze the order of convergence of the discrete $ \ell_2 $-norm error $ \mathcal{O}(h^2+\triangle x^4+ \triangle x^{p+1}/h) $ by managing the relationship between the local truncation errors from each discretization procedure and the interpolation properties with a symmetric high-order discretization of the diffusion term. Furthermore, stability is established by the uniform boundedness of the numerical solution using the discrete Grönwall's Lemma. We provide numerical examples to support the validity of the theoretical convergence and stability analysis for the propounded backward semi-Lagrangian scheme.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.