Abstract
The aim of the present study was to determine whether the plasma membrane is also involved in the light-tissue interaction because of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase electron chain, which can serve as a photosensitizer. It has been suggested that the mechanism of photobiostimulation involves light-induced low levels of reactive oxygen species (ROS) that serve as signal transduction messengers. Production of ROS following visible-light irradiation was verified by the electron paramagnetic resonance (EPR) spin-trapping technique, and the mitochondrial cytochromes were suggested as the main cellular target for visible-light absorption. Isolated sperm membranes were illuminated with visible light and the increase in oxygen radical production was measured using the EPR spin-trapping technique coupled with the probe 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). A broadband visible light source (400-800 nm) at 40-130 mW/cm(2) with appropriate filters provided the illumination. In order to determine whether the light-induced ROS production is a result of a photo-accelerated electron transfer in the enzyme-catalyzed reaction with oxygen in the plasma membrane, or resulted from a photochemical reaction of the chromophores alone with oxygen, denatured membranes were irradiated as well. Visible-light-induced oxyradicals were detected in isolated sperm membranes. Blue light was found to be more effective than red. Illuminated denatured membranes produced the same amount of ROS as non-denatured membranes. Visible-light illumination, especially in the blue region, increases ROS levels in isolated plasma membranes. The mechanism of ROS formation is probably a photochemical reaction of the membranal chromophhores, for example, cytochromes or flavins with oxygen, and not an enzyme-catalyzed photochemical reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.