Abstract
Secretion of the proinflammatory cytokines, interleukin (IL)-1beta and IL-18, usually requires two signals. The first, due to microbial products such as lipopolysaccharide, initiates transcription of the cytokine genes and accumulation of the precursor proteins. Cleavage and secretion of the cytokines is mediated by caspase-1, in association with an inflammasome containing Nalp3, which can be activated by binding of extracellular ATP to purinergic receptors. We show that treatment of macrophages with ATP results in production of reactive oxygen species (ROS), which stimulate the phosphatidylinositol 3-kinase (PI3K) pathway and subsequent Akt and ERK1/2 activation. ROS exerts its effect through glutathionylation of PTEN (phosphatase and tensin homologue deleted from chromosome 10), whose inactivation would shift the equilibrium in favor of PI3K. ATP-dependent ROS production and PI3K activation also stimulate transcription of genes required for an oxidative stress response. In parallel, ATP-mediated ROS-dependent PI3K is required for activation of caspase-1 and secretion of IL-1beta and IL-18. Thus, an increase in ROS levels in ATP-treated macrophages results in activation of a single pathway that promotes both adaptation to subsequent exposure to oxidants or inflammation, and processing and secretion of proinflammatory cytokines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.