Abstract
The Mars Sample Return campaign aims to use three flight missions and one ground element to safely bring rock cores, regolith and atmospheric samples from the surface of Mars to Earth to answer key questions about the geologic and climate history of Mars, including the potential for ancient life. Since its landing in Jezero Crater in 2021, the first mission, NASA’s Mars 2020, has collected a number of samples on the crater floor and on the delta using the Perseverance rover. Subsequent missions would recover the sealed sample tubes, launch them into Mars orbit, and transport them back to Earth. The ground element would be a high-containment facility that would isolate and protect the samples during initial sample characterization, which would include sample safety assessments and time-sensitive scientific investigations. These elements are currently in the planning and design stages of development, and represent an international effort of NASA, the European Space Agency (ESA), and many industry partners. The work presented here provides an overview of the planetary protection strategy of the third flight mission, the ESA-led Earth Return Orbiter, which hosts the NASA-provided Capture, Containment, and Return System. The orbiter would detect and capture the container with up to 30 sealed tubes previously put in Martian orbit, contain them in redundant containers to ensure that no potentially hazardous Mars particles are released, and return them to Earth through an entry vehicle. Both NASA and ESA policies comply with the United Nations’ Outer Space Treaty by planning to protect Earth’s biosphere from any potential adverse effects from material returned from solar system bodies beyond the Earth-Moon system. In the conduct of Mars Sample Return, the two agencies have mutually agreed to apply approaches consistent with their own planetary protection standards to the campaign elements they each provide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.