Abstract

A fuel cladding mechanical test, performed under conditions of plane strain deformation in the transverse direction of tube axis, was originally developed at Pennsylvania State University. It was decided to implement this original test within the PROMETRA program using the same experimental procedure and its optimization for a ring mechanical testing on plane strain conditions (PST tests) in hot cells laboratory.This paper presents a detailed description and an interpretation of the Plane Strain Tensile (PST) tests performed in the framework of the PROMETRA program on fresh and irradiated claddings. At first, the context of the PST tests is situated and the specificities of these tests implemented at CEA are justified. Indeed, a significant adjustment of the original experimental procedure is carried out in order to test the irradiated fuel cladding in the best possible conditions.Then, the tests results on fresh Zircaloy-4 and on irradiated Zircaloy-4, M5™ and ZIRLO® specimens are gathered. The main analyses in support of these tests, such as metallographies, fractographic examinations and finite element simulations are detailed. Finally, a synthesis of the interpretation of the tests is proposed.The PST test seems only representative of plane strain fracture conditions when the test material is very ductile (fresh or high temperature or low hydride material like M5TM). However, it provides a relevant representation of the RIA rupture initiation which is observed in irradiated cladding resulting from hydride rim damage due to the strong irradiation of a fuel rod.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call