Abstract

Full-field measurement methods have emerged in the last years and these methods are characterized by directly providing displacement and strain fields for all points over the specimen surface. Thus, the design of heterogeneous tests can be performed for material parameter identification purposes since the inhomogeneous strain fields can be measured. However, (i) no defined criterion yet exists for designing new heterogeneous tests, (ii) it is rather difficult to compare and rate different tests and (iii) a quantitative way to define the best test for material behavior characterization of sheet metals has yet to be proposed. Due to this, the goal of this work is the development of a global indicator able to assess mechanical tests. The proposed indicator quantifies the strain state range, the deformation heterogeneity and the strain level achieved in the test, based on a continuous evaluation of the strain field up to rupture. This global indicator was applied to rank some classical tests, such as uniaxial tensile, simple shear, plane strain and biaxial tensile tests. These tests were carried out numerically by reproducing the virtual behavior of DC04 mild steel. A constitutive model composed by the non-quadratic Yld2004-18p yield criterion combined with a mixed isotropic-kinematic hardening law and a macroscopic rupture criterion was used. The performance of the tests was compared with the indicator and a ranking was established. The results obtained show that biaxial tension is the test providing more information for the mechanical behavior characterization of the material. It was also verified that plane strain test presents a better performance than simple shear and uniaxial tensile tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call