Abstract
BackgroundHIV-1 translation is modulated by the activation of the interferon (IFN)-inducible Protein Kinase RNA-activated (PKR). PKR phosphorylates its downstream targets, including the alpha subunit of the eukaryotic translation Initiation Factor 2 (eIF2α), which decreases viral replication. The PKR Activator (PACT) is known to activate PKR after a cellular stress. In lymphocytic cell lines, HIV-1 activates PKR only transiently and not when cells replicate the virus at high levels. The regulation of this activation is due to a combination of viral and cellular factors that have been only partially identified.ResultsPKR is transiently induced and activated in peripheral blood mononuclear cells after HIV-1 infection. The addition of IFN reduces viral replication, and induces both the production and phosphorylation of PKR. In lymphocytic Jurkat cells infected by HIV-1, a multiprotein complex around PKR contains the double-stranded RNA binding proteins (dsRBPs), adenosine deaminase acting on RNA (ADAR)1 and PACT. In HEK 293T cells transfected with an HIV-1 molecular clone, PACT unexpectedly inhibited PKR and eIF2α phosphorylation and increased HIV-1 protein expression and virion production in the presence of either endogenous PKR alone or overexpressed PKR. The comparison between different dsRBPs showed that ADAR1, TAR RNA Binding Protein (TRBP) and PACT inhibit PKR and eIF2α phosphorylation in HIV-infected cells, whereas Staufen1 did not. Individual or a combination of short hairpin RNAs against PACT or ADAR1 decreased HIV-1 protein expression. In the astrocytic cell line U251MG, which weakly expresses TRBP, PACT mediated an increased HIV-1 protein expression and a decreased PKR phosphorylation. In these cells, a truncated PACT, which constitutively activates PKR in non-infected cells showed no activity on either PKR or HIV-1 protein expression. Finally, PACT and ADAR1 interact with each other in the absence of RNAs.ConclusionIn contrast to its previously described activity, PACT contributes to PKR dephosphorylation during HIV-1 replication. This activity is in addition to its heterodimer formation with TRBP and could be due to its binding to ADAR1. HIV-1 has evolved to replicate in cells with high levels of TRBP, to induce the expression of ADAR1 and to change the function of PACT for PKR inhibition and increased replication.
Highlights
Human immunodeficiency virus type 1 (HIV-1) translation is modulated by the activation of the interferon (IFN)-inducible Protein Kinase RNA-activated (PKR)
To determine the importance of PKR activation during an IFN response in these cells and its impact on HIV-1 replication, half of the culture was treated with IFN at day 7 and IFN was maintained in the medium up to day 14
Our results show that three cellular proteins, Trans-Activation Response element (TAR) RNA Binding Protein (TRBP), Adenosine deaminase acting on RNA 1 (ADAR1) and PKR Activator (PACT) contribute to the inhibition of PKR and eIF2α phosphorylation observed in HIV-1-infected cells (Figure 4)
Summary
HIV-1 translation is modulated by the activation of the interferon (IFN)-inducible Protein Kinase RNA-activated (PKR). PKR phosphorylates its downstream targets, including the alpha subunit of the eukaryotic translation Initiation Factor 2 (eIF2α), which decreases viral replication. HIV-1 activates PKR only transiently and not when cells replicate the virus at high levels. The regulation of this activation is due to a combination of viral and cellular factors that have been only partially identified. PKR is extremely effective in restricting HIV-1 expression and replication in vitro [12,19,27,28,29,30] Despite this observed activity, HIV-1 replicates efficiently in many permissive cell lines and primary cells, suggesting that the kinase activity of PKR in natural infection of lymphocytes is tightly regulated [17]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have