Abstract

Understanding piezotronic correlated carrier recombination behavior in quantum wells is essential for their applications. In this work, we have studied the influence of piezotronics on carrier recombination processes in single InGaN/GaN multiple quantum wells microwire (MQW-MW) by using steady-state and time-resolved spectroscopies. We conclude that mechanical strain induced piezotronics promotes the charge separation of excitons in space, and slows down the recombination rate of free carriers. The proposed model is supported by three independent experiments: photoluminescence experiment of MQW-MW before and after peel off, strain dependent TRPL experiment, and excitation fluency dependent PL intensity experiment. Our study could provide a guideline for the application of piezotronic in MQW-MW-based optoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.