Abstract

Stress-induced changes to plant biochemistry and physiology can influence plant nutritional quality and subsequent interactions with herbivorous pests. However, the effects of stress combinations are unpredictable and differ to the effects of individual stressors. Here we studied the effects of exposure to the phytotoxic air-pollutant ozone (O3), feeding by larvae of the large cabbage white butterfly (Pieris brassicae), and a combination of the two stresses, on the emission of volatile organic compounds (VOCs) by black mustard plants (Brassica nigra) under field and laboratory conditions. Field-grown B. nigra plants were also measured for carbon-nitrogen (C–N) content, net photosynthetic activity (Pn), stomatal conductance (gs) and biomass. The effects of O3 on interactions between plants and a herbivorous pest were addressed by monitoring the abundance of wild diamondback moth larvae (Plutella xylostella) and feeding-damage to B. nigra plants in an O3-free air concentration enrichment (O3-FACE) field site. Herbivore-feeding induced the emission of VOCs that were not emitted by undamaged plants, both under field and laboratory conditions. The combination of O3 and herbivore-feeding stresses resulted in enhanced emission rates of several VOCs from field-grown plants. Short-term O3 exposure (of 10 days) and P. brassicae-feeding did not affect C–N content, but chronic O3 exposure (of 34 and 47 days) and P. brassicae-feeding exacerbated suppression of Pn. Ozone exposure also caused visible injury and decreased the plant biomass. Field-grown B. nigra under elevated O3 were infested with fewer P. xylostella larvae and received significantly less feeding damage. Our results suggest that plants growing in a moderately polluted environment may be of reduced quality and less attractive to foraging herbivores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call