Abstract
Studying the physical processes occurring in the region just above the magnetic polesof strongly magnetized, accreting binary neutron stars is essential to our understanding of stellarand binary system evolution. Perhaps more importantly, it provides us with a natural laboratoryfor studying the physics of high temperature and density plasmas exposed to extreme radiation,gravitational, and magnetic fields. Observations over the past decade have shed new light on themanner in which plasma falling at near the speed of light onto a neutron star surface is halted. Recentadvances in modeling these processes have resulted in direct measurement of the magnetic fieldsand plasma properties. On the other hand, numerous physical processes have been identified thatchallenge our current picture of how the accretion process onto neutron stars works. Observationand theory are our essential tools in this regime because the extreme conditions cannot be duplicatedon Earth. This white paper gives an overview of the current theory, the outstanding theoreticaland observational challenges, and the importance of addressing them in contemporary astrophysicsresearch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.