Abstract

In this chapter we consider the effect of space–time curvature on families of timelike and null curves. These could represent flow lines of fluids or the histories of photons. In §4.1 and §4.2 we derive the formulae for the rate of change of vorticity, shear and expansion of such families of curves; the equation for the rate of change of expansion (Raychaudhuri's equation) plays a central role in the proofs of the singularity theorems of chapter 8. In §4.3 we discuss the general inequalities on the energy–momentum tensor which imply that the gravitational effect of matter is always to tend to cause convergence of timelike and of null curves. A consequence of these energy conditions is, as is seen in §4.4, that conjugate or focal points will occur in families of non-rotating timelike or null geodesics in general space–times. In §4.5 it is shown that the existence of conjugate points implies the existence of variations of curves between two points which take a null geodesic into a timelike curve, or a timelike geodesic into a longer timelike curve. Timelike curves In chapter 3 we saw that if the metric was static there was a relation between the magnitude of the timelike Killing vector and the Newtonian potential. One was able to tell whether a body was in a gravitational field by whether, if released from rest, it would accelerate with respect to the static frame defined by the Killing vector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.