Abstract

The motion of particles on spherical dimensional spacetimes can, under some assumptions, be described by the curves on a two-dimensional manifold, the optical and Jacobi manifolds for null and timelike curves, respectively. In this paper we resort to auxiliary two-dimensional metrics to study circular geodesics of generic static, spherically symmetric, and asymptotically flat dimensional spacetimes, whose functions are at least C 2 smooth. This is done by studying the Gaussian curvature of the bidimensional equivalent manifold as well as the geodesic curvature of circular paths on these. This study considers both null and timelike circular geodesics. The study of null geodesics through the optical manifold retrieves the known result of the number of light rings on the spacetime outside a black hole and on spacetimes with horizonless compact objects. With an equivalent procedure we can formulate a similar theorem on the number of marginally stable timelike circular orbits of a given spacetime satisfying the previously mentioned assumptions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call