Abstract

In this work, we study the equatorial causal geodesics of the Taub–NUT (TN) spacetime in comparison with massless TN spacetime. We emphasized both on the null circular geodesics and time-like circular geodesics. From the effective potential diagram of null and time-like geodesics, we differentiate the geodesics structure between TN spacetime and massless TN spacetime. It has been shown that there is a key role of the NUT parameter to changes the shape of pattern of the potential well in the NUT spacetime in comparison with massless NUT spacetime. We compared the innermost stable circular orbit (ISCO), marginally bound circular orbit (MBCO) and circular photon orbit (CPO) of the said spacetime with graphically in comparison with massless cases. Moreover, we compute the radius of ISCO, MBCO and CPO for extreme TN black hole (BH). Interestingly, we show that these three radii coincides with the Killing horizon, i.e. the null geodesic generators of the horizon. Finally in Appendix A, we compute the center-of-mass (CM) energy for TN BH and massless TN BH. We show that in both cases, the CM energy is finite. For extreme NUT BH, we found that the diverging nature of CM energy. First, we have observed that a non-asymptotic flat, spherically symmetric and stationary extreme BH showing such feature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call