Abstract

A quantum Hamiltonian which evolves the gravitational field according to time as measured by constant surfaces of a scalar field is defined through a regularization procedure based on the loop representation, and is shown to be finite and diffeomorphism invariant. The problem of constructing this Hamiltonian is reduced to a combinatorial and algebraic problem which involves the rearrangements of lines through the vertices of arbitrary graphs. This procedure also provides a construction of the Hamiltonian constraint as a finite operator on the space of diffeomorphism invariant states as well as a construction of the operator corresponding to the spatial volume of the Universe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.