Abstract

Microtubules are cylindrical polymers found in every eukaryotic cell. They have a unique helical structure that has implications at both the cellular level, in terms of the functions they perform, and at the multicellular level, such as determining the left-right symmetry in plants. Through the combination of an atomically detailed model for a microtubule and large-scale computational techniques for computing electrostatic interactions, we are able to explain the observed microtubule structure. On the basis of the lateral interactions between protofilaments, we have determined that B lattice is the most favorable configuration. Further, we find that these lateral bonds are significantly weaker than the longitudinal bonds along protofilaments. This explains observations of microtubule disassembly and may serve as another step toward understanding the basis for dynamic instability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call