Abstract

There is inherent capacity to increase the degree of aggregation within each of the levels of structural organization of living matter. At the macromolecular level (MML), this is an increase in the gene number in the genomes of evolving organisms; at the cellular level (CL), an increase in cell size; and at the multicellular level (MCL), an increase in the number of cells in the multicellular aggregate. However, the increase in the degree of aggregation causes gene incompatibility in case of genome evolution and instability in case of large cells and multicellular aggregates with simple structure. Gene incompatibility may be neutralized by spacio-temporal disconnection of the products of incompatible genes at the cellular and multicellular levels. The larger cells and multicellular aggregates are stabilized by increased structural complexity which is a consequence of the origin of new genes. There is a feedback between the processes of evolution at different levels MML→CL→ MCL. The processes of evolutionary development at different levels of structural organization are also relatively independent. The coincidence of these processes gives rise to stable organisms of higher complexity, which are then subjected to natural selection and population processes to establish a new step in progressive biological evolution. In all of the normal organisms of newly evolved species there is a correspondence between the different levels of structural organization, i.e. in their degree of aggregation, their complexity and functional organization. The form of correspondence for multicellular organisms is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call