Abstract

Ctenophores have traditionally been treated as eumetazoans, but some recent whole genome studies have revived the idea that they are, rather, the sister group to all other metazoans. This deep branching position implies either that nervous systems have evolved twice, in Ctenophora and in Eumetazoa, or that an ancestral metazoan nervous system has been lost in sponges and placozoans. We caution, however, that phylogenetic-tree construction artifacts may have placed ctenophores too deep in the metazoan tree. We discuss nervous system origins under these alternative phylogenies and in light of comparative data of ctenophore and eumetazoan nervous systems. We argue that characters like neuropeptide signaling, ciliary photoreceptors, gap junctions and presynaptic molecules are consistent with a shared ancestry of nervous systems. However, if ctenophores are the sister group to all other metazoans, this ancestral nervous system was likely very simple. Further studies are needed to resolve the deep phylogeny of metazoans and to have a better understanding of the early steps of nervous system evolution.

Highlights

  • Ctenophores have a gut with digestive enzymes lined with an epithelium, a complex nervous system and a complicated system of muscles [1]

  • Different phylogenomic analyses produce contradicting results. In both studies, when more metazoan taxa are included using expressed sequence tag (EST) data, most of the analyses show reduced support for the ‘ctenophores first’ topology; in the case of Ryan et al [6], the Bayesian analyses of the EST dataset removing distant out-groups supports the topology of ‘sponges first’

  • Ctenophores are sister to the rest of metazoans, this implies that sponges and placozoans have lost the nervous system, or that nervous systems evolved independently in ctenophores and eumetazoans

Read more

Summary

Introduction

Ctenophores ( known as comb jellies or sea gooseberries) are free-living marine organisms. The recent analyses of ctenophore genomes support the non-canonical phylogeny based on the absence from ctenophores of key eumetazoan characters, such as Hox genes and microRNAs. If this phylogeny is correct, nerves and muscles must either have evolved independently in Ctenophora and Eumetazoa (for simplicity, referring to Cnidaria plus Bilateria throughout the paper), or these systems evolved in the metazoan ancestor and have been lost in sponges and placozoans, lineages without any trace of synaptically connected nerve cells.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.