Abstract

Miniaturized species have evolved in many animal lineages, including insects and vertebrates. Consequently, their nervous systems are constrained to fit within tiny volumes. These miniaturized nervous systems face two major challenges for information processing: noise and energy consumption. Fewer or smaller neurons with fewer molecular components will increase noise, affecting information processing and transmission. Smaller, more densely-packed neural processes will increase the density of energy consumption whilst reducing the space available for mitochondria, which supply energy. Although miniaturized nervous systems benefit from smaller distances between neurons, thus saving time, space and energy, they have also increased the space available for neural processing by expanding and contorting their nervous systems to fill any available space, sometimes at the expense of other structures. Other adaptations, such as multifunctional neurons or matched filters, may further alleviate the pressures on space within miniaturized nervous systems. Despite these adaptations, we argue that limitations on information processing are likely to affect the behaviour generated by miniaturized nervous systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.