Abstract
BackgroundAcoels are simply organized unsegmented worms, lacking hindgut and anus. Several publications over recent years challenge the long-held view that acoels are early offshoots of the flatworms. Instead a basal position as sister group to all other bilaterian animals was suggested, mainly based on molecular evidence. This led to the view that features of acoels might reflect those of the last common ancestor of Bilateria, and resulted in several evo-devo studies trying to interpret bilaterian evolution using acoels as a proxy model for the "Urbilateria".ResultsWe describe the first complete mitochondrial genome sequence of a member of the Acoela, Symsagittifera roscoffensis. Gene content and circular organization of the mitochondrial genome does not significantly differ from other bilaterian animals. However, gene order shows no similarity to any other mitochondrial genome within the Metazoa. Phylogenetic analyses of concatenated alignments of amino acid sequences from protein coding genes support a position of Acoela and Nemertodermatida as the sister group to all other Bilateria. Our data provided no support for a sister group relationship between Xenoturbellida and Acoela or Acoelomorpha. The phylogenetic position of Xenoturbella bocki as sister group to or part of the deuterostomes was also unstable.ConclusionsOur phylogenetic analysis supports the view that acoels and nemertodermatids are the earliest divergent extant lineage of Bilateria. As such they remain a valid source for seeking primitive characters present in the last common ancestor of Bilateria. Gene order of mitochondrial genomes seems to be very variable among Acoela and Nemertodermatida and the groundplan for the metazoan mitochondrial genome remains elusive. More data are needed to interpret mitochondrial genome evolution at the base of Bilateria.
Highlights
Acoels are organized unsegmented worms, lacking hindgut and anus
To evaluate the phylogenetic position of acoels using an independent set of molecular data we present the first complete sequence of a mitochondrial genome of a member of the Acoela, Symsagittifera roscoffensis (Graff, 1891)
We describe gene content and transfer RNA (tRNA) secondary structure, compare the mitochondrial gene order to other taxa and show the results of a phylogenetic analysis with sequence alignments from mitochondrial protein-coding genes
Summary
Acoels are organized unsegmented worms, lacking hindgut and anus. Instead a basal position as sister group to all other bilaterian animals was suggested, mainly based on molecular evidence This led to the view that features of acoels might reflect those of the last common ancestor of Bilateria, and resulted in several evo-devo studies trying to interpret bilaterian evolution using acoels as a proxy model for the “Urbilateria”. Soft-bodied, unsegmented worms without hindgut and anus - the mouth opens to a central digestive parenchyma, a gut lumen is absent. Acoels move with their multiciliated epidermis many are ‘surprisingly muscular’ [1]. Frontal organ morphology [6,7], sperm ultrastructure [8], and patterns in the nervous and muscular systems [9,10,11] all demonstrate the uniqueness of acoelomorphs
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have