Abstract
Knowledge of the phylogenetic history of the human immunodeficiency viruses (HIV-1 and HIV-2) is important for our understanding of the epidemiology of AIDS, the disease caused by these viruses. Reconstruction of the evolutionary tree is hampered, however, by two problems. One is the high variation in nucleotide sequence between the known HIV isolates which can create formidable difficulties in identifying homologous genomic sites that may be used in a molecular phylogenetic reconstruction. Another impediment has been the lack of unequivocal time calibration points: there is only a sparse 'fossil record' for HIV and limited historical epidemiological data. We have largely overcome these difficulties by: (1) a thorough optimal-sequence alignment analysis; (2) the inclusion of sequences of an early (1976) HIV-1 isolate, a recent (1986) HIV-2 isolate and two simian immunodeficiency viruses (SIV) along with five other HIV-1 isolates; and (3) the reconstruction of a minimum-length evolutionary tree based on the envelope-gene variable positions. We conclude that HIV-1 may have evolved from its common ancestor with HIV-2 as recently as 40 years ago.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have