Abstract

Humans are exposed to numerous endocrine disruptors on a daily basis, which may interfere with endogenous estrogens, with Di-(2-ethylhexyl) phthalate (DEHP) being one of the most employed. The anterior pituitary gland is a target of 17β-estradiol (E2) through the specific estrogen receptors (ERs) α and β, whose expression levels fluctuate in the gland under different contexts, and the ERα/β index is responsible for the final E2 effect. The aim of the present study was to evaluate in vivo and in vitro the DEHP effects on ERα and β expression in the pituitary cell population, and also its impact on lactotroph and somatotroph cell growth.Our results revealed that perinatal exposure to DEHP altered the ERα and β expression pattern in pituitary glands from prepubertal and adult female rats and increased the percentage of lactotroph cells in adulthood. In the in vitro system, DEHP down-regulated ERα and β expression, and as a result increased the ERα/β ratio and decreased the percentages of lactotrophs and somatotrophs expressing ERα and β. In addition, DEHP increased the S + G2M phases, Ki67 index and cyclin D1 in vitro, leading to a rise in the lactotroph and somatotroph cell populations. These results showed that DEHP modified the pituitary ERα and β expression in lactotrophs and somatotrophs from female rats and had an impact on the pituitary cell growth. These changes in ER expression may be a mechanism underlying DEHP exposure in the pituitary gland, leading to cell growth deregulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.