Abstract

Quantum yields for the photolysis of ozone have been measured at six wavelengths in the region 248 to 334 nm. The quantum yield for the photolysis of pure ozone increases linearly with ozone concentration over the pressure range employed for λ ≤ 310 nm, but is virtually independent of [O 3 ] at λ = 334 nm. At all wavelengths the quantum yield, extrapolated to zero ozone pressure, is near 4. Addition of H 2 to the ozone markedly increases the quantum yield at all wavelengths except λ = 334 nm. Dilution of the ozone by O 2 reduces the quantum yield; at high [O 2 ] the quantum yield tends to zero. It is shown that the results are consistent with the production of singlet molecular oxygen (in the 1 ∆ g or 1 ∑ + g states) in the primary step at all wavelengths in the ultraviolet region. For λ ≤ 302 nm the atomic product is in the excited, 1 D, state, O 3 + hv (λ ≤ 302nm) → O 2 ( 1 ∑ + g or 1 ∆ g ) + O( 1 D), but with increasing wavelength the efficiency of O( 1 D) production drops rapidly, and at λ = 334 nm the atomic product is almost exclusively O( 3 P). O 3 + hv (λ = 334 nm) → O 2 ( 1 ∑ g + or 1 ∆ g ) + O( 3 P). Thus it appears that ozone photolysis in the weak absorption tail of the Huggins band does not proceed with conservation of spin. Some possible implications of the laboratory observations in atmospheric photochemistry are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.