Abstract

The photochemical decomposition of dry ozone has been studied at λ = 2537 Å. The quantum yield for the photolysis of pure ozone was proportional to the pressure of ozone; the highest quantum yield recorded was 16.7 at a pressure of 5 cmHg ozone. Variation of light intensity did not markedly affect the quantum yield, and some evidence was found for a wall termination reaction. A reaction mechanism is proposed in which O( 1 D ) atoms, formed in the primary photolysis, initiate a chain propagated by energy-rich oxygen molecules. A discussion of the nature of the energy-rich molecules is presented. Addition of inert gases to the pure ozone reduces the quantum yield to a limiting value of two. This is explained in terms of the deactivation of the energy-rich oxygen molecule. In the presence of oxygen, the quantum yield tends to zero, as a result of the reverse reaction O + O 2 + M → O 3 + M .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.