Abstract

A method of determining the dynamic stresses in vibrating cantilevered beams using photoelasticity is presented. The method uses the basic principles of photomechanics and the optic-stress laws. A high-intensity strobe light is timed with the frequency of vibration so that the beam image appears to be stationary. Data are recorded with a camera and analyzed to provide an experimental solution. The theoretical solution is derived from the Bernoulli-Euler equation of motion. Two basic types of beams were investigated, an aluminum beam coated with a birefringent material to simulate an actual structural member and a birefringent model that was dynamically similar to the aluminum beam. The feasibility of extending the technique to more complicated shapes is suggested by this investigation. The experimental results and feasibility of the concept are verified by close correlation with the analytical solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.