Abstract

We have conducted a study of the compositional control of epitaxial ZnSySe1-y grown by photoassisted metal organic vapor phase epitaxy (MOVPE) (250 torr, 340°C, UV=14 mW/cm2) on GaAs (100) substrates. We have achieved lattice matched ZnSSe films on GaAs substrates using photoassisted growth using dimethylzinc (DMZn), dimethylselenide (DMSe), and tertiary-butylmercaptan (t-BuSH) as precursors. In addition, we have obtained sulfur compositions (y), ranging from 0.023 to unity (ZnS). The growth rate of the ZnS was 1 µm/h, which was previously unattainable by our group using diethylsulfur. The closely lattice matched sample (y=0.07 as determined by high resolution x-ray diffraction) showed a near band edge peak intensity (NBE) to deep level emission intensity (DLE) ratio of 77 to 1, as determined by room temperature photoluminescence measurements. We have examined the sulfur incorporation as a function of source mole fractions, UV intensity, and growth temperature and found that optimized growth conditions (optimized for range of compositions possible, and NBE/DLE ratio) are XDMZn=1.5 × 10−4, XDMSe=3×10−4, UV=14 mW/cm2, growth temperature=340°C. XDMZn and XDMSe are the mole fractions of DMZn and DMSe, respectively. We have found the growth rate to be 1 µm/h for y=0.023 to 0.24 for these optimized conditions. It was found that to achieve sulfur compositions of less than 0.9, the t-BuSH mole fractions had to be kept low. Higher UV intensities increased the incorporation of selenium, while also lowering the material quality (NBE/DLE ratios). We have shown that the optical material qualities of ZnSSe films grown with t-BuSH are much better than ZnSSe films grown with DES.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.