Abstract

Mutations in the gene encoding phospholipase C-γ2 (PLCγ2) have been shown to be associated with resistance to targeted therapy of chronic lymphocytic leukemia (CLL) with the Bruton's tyrosine kinase inhibitor ibrutinib. The fact that two of these mutations, R665W and L845F, imparted upon PLCγ2 an ∼2-3-fold ibrutinib-insensitive increase in the concentration of cytosolic Ca2+ following ligation of the B cell antigen receptor (BCR) led to the assumption that the two mutants exhibit constitutively enhanced intrinsic activity. Here, we show that the two PLCγ2 mutants are strikingly hypersensitive to activation by Rac2 such that even wild-type Rac2 suffices to activate the mutant enzymes upon its introduction into intact cells. Enhanced "basal" activity of PLCγ2 in intact cells is shown using the pharmacologic Rac inhibitor EHT 1864 and the PLCγ2F897Q mutation mediating Rac resistance to be caused by Rac-stimulated rather than by constitutively enhanced PLCγ2 activity. We suggest that R665W and L845F be referred to as allomorphic rather than hypermorphic mutations of PLCG2 Rerouting of the transmembrane signals emanating from BCR and converging on PLCγ2 through Rac in ibrutinib-resistant CLL cells may provide novel drug treatment strategies to overcome ibrutinib resistance mediated by PLCG2 mutations or to prevent its development in ibrutinib-treated CLL patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.