Abstract

BackgroundStudying and discovering the molecular mechanism of Plasmodium sexual development is crucial for the development of transmission blocking drugs and malaria eradication. The aim of this study was to investigate the feasibility of using phosphatase inhibitors as a tool for screening proteins essential for Plasmodium sexual development and to discover proteins affecting the sexual development of malaria parasites. MethodsDifferences in protein phosphorylation among Plasmodium gametocytes incubated with BVT-948 under in vitro ookinete culture conditions were evaluated using phosphoproteomic methods. Gene Ontology (GO) analysis was performed to predict the mechanism by which BVT-948 affected gametocyte–ookinete conversion. The functions of 8 putative proteins involved in Plasmodium berghei sexual development were evaluated. Bioinformatic analysis was used to evaluate the possible mechanism of PBANKA_0100800 in gametogenesis and subsequent sexual development. ResultsThe phosphorylation levels of 265 proteins decreased while those of 67 increased after treatment with BVT-948. Seven of the 8 genes selected for phenotype screening play roles in P. berghei sexual development, and 4 of these were associated with gametocytogenesis. PBANKA_0100800 plays essential roles in gametocyte–ookinete conversion and transmission to mosquitoes. ConclusionsSeven proteins identified by screening affect P. berghei sexual development, suggesting that phosphatase inhibitors can be used for functional protein screening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.