Abstract

Metformin, a biguanide antidiabetic drug, is used to decrease hyperglycemia in patients with type 2 diabetes. Recently, the epidemiological studies revealed the potential of metformin as an anti-tumor drug for several types of cancer, including breast cancer. Anti-tumor metformin action was found to be mediated, at least in part, via activation of adenosine monophosphate-activated protein kinase (AMPK)-intracellular energy sensor, which inhibits the mammalian target of rapamycin (mTOR) and some other signaling pathways. Nevertheless, some patients can be non-sensitive or resistant to metformin action. Here we analyzed the mechanism of the formation of metformin-resistant phenotype in breast cancer cells and its role in estrogen receptor (ER) regulation. The experiments were performed on the ER-positive MCF-7 breast cancer cells and metformin-resistant MCF-7 subline (MCF-7/M) developed due to long-term metformin treatment. The transcriptional activity of NF-κB and ER was measured by the luciferase reporter gene analysis. The protein expression was determined by immunoblotting (Snail1, (phospho)AMPK, (phospho)IκBα, (phospho)mTOR, cyclin D1, (phospho)Akt and ERα) and immunohistochemical analysis (E-cadherin). We have found that: 1) metformin treatment of MCF-7 cells is accompanied with the stimulation of AMPK and inhibition of growth-related proteins including IκBα, NF-κB, cyclin D1 and ERα; 2) long-term metformin treatment lead to the appearance and progression of cross-resistance to metformin and tamoxifen; the resistant cells are characterized with the unaffected AMPK activity, but the irreversible ER suppression and constitutive activation of Akt/Snail1 signaling; 3) Akt/Snail1 signaling is involved into progression of metformin resistance. The results presented may be considered as the first evidence of the progression of cross-resistance to metformin and tamoxifen in breast cancer cells. Importantly, the acquired resistance to both drugs is based on the constitutive activation of Akt/Snail1/E-cadherin signaling that opens new perspectives to overcome the metformin/tamoxifen resistance of breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.