Abstract
Abstract Due to their high sensitivity to oxygen, the use of refractory metals requires an effective protection against oxidation. In the case of molybdenum this is achieved by using a silicon and boron based coating commercially marketed under the trade name SIBOR®. In the moduction of a SIBOR®-coating, a mixture of Si, B and C is plasma sprayed in air onto the Mo-surface to be protected and subsequently annealed in hydrogen. Previous investigations have shown that in doing so a stationary coating of Mo-borides and Mo-silicides is formed. However, the exact phase arrangement and composition has until now remained unclear. Energy dispersive X-ray spectroscopy (EDS) in the scanning electron microscope (SEM) is able to analyse the silicides in SIBOR®, although due to the overlapping of the Mo- and B-spectral partial a clear identification of the borides was not possible. Using a combination of electron back scatter diffraction (EBSD) and wavelength dispersive X-ray spectroscopy (WDS) it is, however, shown that SIBOR® is made up of a series of sub-layers of Mo2B and MoB followed by Mo5Si3 and MoSi2, and that the other phases of the Mo-Si-B ternary system, i.e. Mo3Si and Mo5SiB2(T2), do not occur. Notably, the two borides and the Mo5Si3 exhibit a structure which is polycrystalline in the lateral direction yet normal to the surface forms of only a single layer of crystallites. In contrast, the final MoSi2-layer has a polycrystalline structure both in the lateral and in the normal directions. Furthermore, Mo5Si3 and MoSi2 both exhibit marked textures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.