Abstract

The peroxisome proliferator-activated receptors (PPARs) are a family of fatty acid-activated transcription factors which control lipid homeostasis and cellular differentiation. PPARalpha (NR1C1) controls lipid oxidation and clearance in hepatocytes and PPARgamma (NR1C3) promotes preadipocyte differentiation and lipogenesis. Drugs that activate PPARalpha are effective in lowering plasma levels of lipids and have been used in the management of hyperlipidemia. PPARgamma agonists increase insulin sensitivity and are used in the management of type 2 diabetes. In contrast, there are no marketed drugs that selectively target PPARdelta (NR1C2) and the physiological roles of PPARdelta are unclear. In this report we demonstrate that the expression of PPARdelta is increased during the differentiation of human macrophages in vitro. In addition, a highly selective agonist of PPARdelta (compound F) promotes lipid accumulation in primary human macrophages and in macrophages derived from the human monocytic cell line, THP-1. Compound F increases the expression of genes involved in lipid uptake and storage such as the class A and B scavenger receptors (SRA, CD36) and adipophilin. PPARdelta activation also represses key genes involved in lipid metabolism and efflux, i.e. cholesterol 27-hydroxylase and apolipoprotein E. We have generated THP-1 sublines that overexpress PPARdelta and have confirmed that PPARdelta is a powerful promoter of macrophage lipid accumulation. These data suggest that PPARdelta may play a role in the pathology of diseases associated with lipid-filled macrophages, such as atherosclerosis, arthritis, and neurodegeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.