Abstract

Mammalian cell-to-cell channels show polar permselective properties discriminating against negatively charged 14 A-wide molecules and are more restrictive than the channels of insect cell junctions. The channel permeability is modulated by conditions affecting the concentration of intracellular ionic Ca: elevation of the external Ca load (B cells), treatment of cell cultures with Ca-transporting ionophore (in the presence of external Ca, but not in its absence), treatment with a combination of cyanide and iodoacetate, or with high levels of carbon dioxide, all cause depression of channel permeability. Treatment of cell cultures with cyclic AMP or its more permeable derivative, dibutyryl cyclic AMP, produces increase in permeability. A similar channel up regulation is observed upon elevation of the endogenous level of cyclic AMP by serum deprivation or lowering of cell density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.